Best Technology

Best Technology - Part Cleaning, Passivation and Finishing Systems

Precision Cleaning, Passivation & Finishing Systems
Call-us 612.392.2414 email-usSales@BestTechnologyInc.com
  • Home
  • Products
    • Industrial Parts Washers
    • Precision Cleaning Systems
    • Passivation Equipment
    • Electropolishing Equipment
    • Surface Finishing Systems
    • Mass Finishing Machines
    • Wet Benches
    • Specialty & Custom Industrial Process Systems
    • Precision Cleaning Chemistries, Solvents, & Fluids
    • 3M Novec Engineered Fluids, Chemicals, & Solvents
  • Services
  • Articles
    • FAQ – Frequently Asked Questions
    • Precision Cleaning
    • Passivation
    • Electropolishing
    • Industrial Parts Washers
    • Newsletters / Blog
  • Case Studies
    • Industry Applications
    • Industrial Parts Washer Case Studies
    • Passivation Systems Case Studies
    • Part Cleaning Case Studies
    • Part Finishing Equipment Case Studies
    • Precision Cleaning Systems Case Studies
  • About Us
  • Contact Us
Request Info

Contact an expert on
Titanium Anodizing

More Info
home Best Technology / Surface Finishing Equipment and Systems / What is Titanium Anodizing? How to Anodize Titanium

What is Titanium Anodizing? How to Anodize Titanium

  • Types
  • How It Works
  • Process Steps

Titanium anodizing is an electrolytic finishing process that manipulates the oxide layer on the surface of titanium via electric current. The titanium item forms the anode (positive electrode) of an electrolytic cell; hence the name “anodize.”

Anodizing has a long history in the aerospace industry, where it was first used in 1923 to protect British seaplane parts from salt-water corrosion. Aerospace companies continue to use anodizing processes today to protect metals from effects of aging, wear and corrosion.

The medical device industry also widely uses the titanium anodizing process, since anodized titanium parts are nontoxic and suitable for biomedical applications, such as orthopedic implants.

Types of Titanium Anodizing

There are two commonly used types of titanium anodizing: Type 2 and Type 3. Type 1 is far less common, and is used in specialized high-temperature treatments.

Type 2 Titanium Anodizing

Type 2 is mainly for wear purposes: It protects the metal surface against the effects of wear. When untreated titanium parts rub against each other, they produce titanium dust – a result that is not desirable with orthopedic implants, for example. Type 2 anodizing provides a wear-resistant surface and helps prevent seizing or friction between sliding titanium surfaces.

The reduced friction, or lubricity, from Type 2 anodized titanium also helps patients with orthopedic implants by improving mobility of joints.

For most Type 2 titanium anodizing lines, AMS 2488D is the applicable specification. SAE International, the aerospace standards organization, is the governing authority for the specification for Type 2, which was last reviewed and reaffirmed in February 2018.

For aerospace applications, Type 2 anodized parts are compatible with aircraft fluids and can withstand extreme temperatures within a range of -70 °F to 260 °F. Type 2 anodized titanium resists corrosion from exposure to salt water and humidity.

Type 2 anodized titanium parts are a distinctive gray color. This makes them easily distinguished from stainless steel, or from color anodized titanium.

Center screw is Type 2 anodized titanium

In this photo of dental implant hardware, the middle screw is made of Type 2 anodized titanium.

Type 3 Titanium Anodizing – Color Titanium

Type 3 titanium anodizing is also called color anodizing. Type 3 anodizing is widely used in the medical world for quick visual identification of parts. For example, an orthopedic surgeon in mid-procedure can simply ask for a blue bone screw, without having to specify the 12 mm length of the screw.

Titanium Anodized Screws - Type 3 - Color

Another example of color coding to assist doctors and physicians is bone fixation plates that an orthopedic surgeon uses to treat trauma fractures. These bone fixation plates have drill guides of different colors to indicate the anatomical difference between the left and right plates.

Type 3 color anodizing is less common in the aerospace industry, but sometimes is used for quick visual identification in complicated assemblies.

Outside the medical device and aerospace industries, Type 3 colored titanium is also used in jewelry manufacturing.

Sample of titanium colors available with Type 3 anodizing

Titanium Anodize Colors

In contrast to Type 2, Type 3 color anodizing lacks an overarching industry specification. AMS 2488D does not address color anodizing, and no industry-wide standards exist to define specific colors in the Type 3 spectrum. This makes color matching of parts from one batch to another a real challenge.

The lack of standards for Type 3 color anodizing means that manufacturers must build their own process validation from the ground up, rather than starting with the framework offered by an industry specification. Best Technology’s process equipment experts offer process validation consulting services for manufacturers installing a new Type 3 titanium anodizing line.

Key differences between Type 2 and Type 3 Titanium Anodizing

Type 2 differs significantly from Type 3 titanium anodizing.

Type 2 Type 3
Primary Benefit Avoid friction between metal surfaces Provide quick visual identification of parts
Specification AMS 2488D None defined
Biocompatible for medical device implants Yes Yes
Improved wear resistance Yes No
Anti-galling / increased lubricity Yes Some
Color Gray Variety of colors.
Typical range includes:

  • Silver
  • Bronze
  • Purple
  • Blue
  • Light Blue
  • Gold
  • Rose
  • Magenta
  • Teal
  • Green

Anodizing Equipment and Tanks for Titanium Color Anodize

Titanium Color Anodizing Tank Line for Color Anodize

How does titanium color anodizing work?

Anodizing machines manipulate the oxide layer on the surface of titanium to produce an “illusion of color.” The titanium oxide layer gives the perception of color due to an interference phenomenon, similar to a prism. Light reflects from both the oxide layer and the underlying titanium at different angles and those reflections interfere with each other. Certain wavelengths of light cancel each other out or combine, so that the remaining light is perceived as color. Unlike aluminum anodizing, no dyes are required to produce the color perception, thus adding to the biomedical safety of the finished part.

An oxide layer forms naturally on the surface of titanium upon exposure to the atmospheric conditions, as oxygen reacts with the surface of titanium. This process of oxidation naturally occurs with many elements and the thin protective oxide layer helps protect it from further reactions to air or water.

When it first forms, the oxide layer is about 1-2 nanometers thick (10-20 angstroms), but it will continue to grow in open air. Without anodizing, the oxide layer typically grows to 20-25 nanometers (200-250 angstroms).

In color titanium anodization, however, the thickness of the oxide layer is augmented and manipulated. For example, the color bronze – the thinnest color layer on the titanium color spectrum – can be achieved by building the oxide layer thickness to about 300 to 350 angstroms. At the other end of the titanium color spectrum, the color green – the thickest color layer – can be achieved with an oxide layer thickness of 500 to 550 angstroms.

Since the entire range of color for the titanium oxide layer is within 25 billionths of a meter (a nanometer is 1-billionth of a meter), it is little wonder that the process requires careful precision and high-quality anodizing equipment to reach the best results.

Electrochemical processing controls the thickness of the titanium oxide layer

The process of manipulating the oxide layer of titanium is an electrochemical process: It uses electricity and chemistry. The titanium part, serving as the anode (positive electrode), is immersed in an aqueous electrolyte solution such as trisodium phosphate (TSP) or various salts. When electrical current is applied, water molecules undergo hydrolysis and split into hydrogen and oxygen. The electrical potential forces the oxygen to the titanium surface, adding to the thin layer of titanium oxide. The final perceived color depends on the thickness of the oxide layer, which can be adjusted by varying the voltage and the immersion time.

How to do Type 3 color titanium anodizing

Chemistry

In Type 3 color anodizing, a titanium part is immersed in an electrolyte solution. The most common chemistry uses trisodium phosphate (TSP), forming an alkaline solution; however, there are many options. The chemistry serves to provide ions for the electrolytic process, but it does not directly affect the titanium surface.

Electricity

The electrical part of the anodizing process requires a specialized rectifier, an electrical device that converts alternating current (AC) to direct current (DC). The rectifier allows you to regulate the voltage to a level that you specify and to control the amperage.

In titanium anodizing, the voltage dictates the color. The volt range for color titanium anodizing is between 15 and 110 volts. A bronze color, with the thinnest oxide layer, can be achieved with about 16 volts. A green color, with the thickest oxide layer, can be achieved with 106 volts.

In contrast, the amperage dictates the time required. By increasing the amperage, the oxide layer forms more quickly. But the increased amperage carries a risk of inconsistency in color output, because it can become too difficult to stop the oxide layer buildup at the correct color. Product size drives the amperage; typically, the larger the product, the more amperage is used.

Process steps for Titanium Anodizing Equipment

Best Technology and its partners have developed custom chemical blends of solutions and electrolytes that greatly increase the manufacturing yield of this process, which are not offered by anyone else in the industry. The chemistry for a titanium anodizing line includes both cleaning and electrochemical electrolytes.

For manufacturers looking to take their titanium color anodizing in-house and build their own Type 3 color anodize line, here is an example of process steps:

  1. High alkaline clean – A general washing in a high-alkaline cleaner ensures that any organics are removed. Organics block the anodize prep step and prevent an even, consistent color.
  2. Cold rinse – Ensure any alkaline detergents are removed from the part. It’s recommended to perform a water-break test. (Water should sheet off the part, not bead off. Beading off means there is still oil or grease on the part and will cause failure in anodizing.)
  3. Hot rinse
  4. Anodize Prep – Preparing the surface of the titanium to receive the oxide layer is the most important step of the process. To achieve consistent color, the oxide layer must be distributed evenly throughout the surface of the part. There are many different options for prep chemistry, for example:
    • Nitric and hydrofluoric acid
    • Nitric acid
    • Hydrochloric acid, etc.
  5. Cold rinse
  6. Alkaline neutralization
  7. Cold rinse
  8. Anodize Process – Trisodium phosphate (TSP)
  9. Cold rinse
  10. Hot rinse

How to get the best results with color titanium anodizing

Surface preparation, also called anodize prep, is crucial for achieving consistent color for titanium. The titanium surface must be prepared in a way that supports the even distribution of the oxide layer. Anodize prep requires removing a thin layer of material to create a uniform surface for color anodizing. The titanium grade determines the level of prep; the purer grades of titanium such as grade 2 require more aggressive surface prep than titanium alloys such as grade 5, titanium 6AI-4V.

Timing is critical after surface preparation. The anodize process should occur almost immediately after the anodize prep. Otherwise within 6-8 hours of exposure to oxygen (air, water) the oxide layer will form apart from anodizing. Anodizing parts after the oxide layer has already formed results in a splotchy color pattern that is not desirable.

Surface finish is one of the biggest factors that can affect the appearance of color. If the part is machined poorly, some of the surface areas can become work-hardened or smeared. Upon application of electricity, the work-hardened or smeared area slows down the electrical current, and the resulting color is inconsistent and not harmonious. For example, the titanium part might have magenta coloration with gold spots, or a blue coloration with bronze spots.

The surface finish also dictates the brilliance of the final color. In other words, if the titanium part has a blasted finish before anodizing, the finished part will continue to have a matte appearance after anodizing. Unlike Type 2, the titanium color anodize process does not affect the brilliance of the surface finish.

Recovering from mistakes in color titanium anodizing

Because anodizing involves manipulating the oxide layer on titanium, that layer can easily be stripped with a high-alkaline cleaner. This makes it relatively easy to recover from mistakes in color anodizing. To recover from the following types of issues, strip the oxide layer with a high-alkaline cleaner, and then repeat the anodize prep and anodize process.

  • Over-anodizing: For example, if a part reaches a magenta color but was intended to be a gold color.
  • Non-harmonious color or splotchy color due to delay between anodize prep and anodize process.

Processing the parts in titanium anodizing equipment specifically made for color titanium anodizing helps control the process to achieve consistent titanium colors.

Equipment for anodizing titanium

Medical device manufacturers depend on Best Technology’s expertise for process design and development with anodizing machines that are designed for safe use with the required chemistries.

Titanium Anodize Equipment Line

Best Technology has the experience and the resources to build Ti anodize tanks and equipment, and to develop processes for Ti anodizing applications both large and small. Let our application engineers design a titanium anodizing line for your products today!

Latest News & Products from Best Technology

Semi-Automated Inline Citric Passivation Solution with Data Tracking

For one medical device manufacturer, the design of a citric passivation solution faced two major challenges: The manufacturing process required performing a water-break test after cleaning parts, before proceeding to passivation. This meant that they could not use a fully automated passivation solution. The system had to have data tracking for quality control purposes. Semi-Automated […]

  • Request More Information
  • Industrial Parts Washers
    • Agitated Immersion Heated Parts Washers
    • Inline Conveyor Wash-Rinse-Dry Parts Washers
    • Immersion Inline Parts Washer
    • Spray Cabinet Parts Washers
      • Front Load Spray Cabinet Parts Washer
      • Top Load Spray Cabinet Industrial Parts Washer
    • Vertical Door Pass Through Parts Washer
    • Rotary Drum Parts Washer
    • Powder Coat Prep Equipment
    • Phosphating Lines
    • Pipe Washing Equipment
  • Precision Cleaning Systems
    • Applicable Articles
    • How clean is clean?
    • How Do Ultrasonic Cleaners Work?
    • Ultrasonic Benchtop Parts Cleaner
    • Benchtop Ultrasonic Parts Cleaning Multi-Tank Systems
    • Ultrasonic Cleaning Consoles
    • Automated Ultrasonic Parts Cleaning Equipment Wash-Rinse-Dry
    • Large Scale Automated Precision Aqueous Cleaning for Cellular Manufacturing
    • Agitated Immersion Ultrasonic Parts Washer
    • Machine Shop Parts Washer for Swiss and CNC Precision Parts
    • Immersible Ultrasonic Transducers
    • Vapor Degreasers
  • Passivation Equipment
    • Applicable Articles
    • What is Passivation? How Does It Work?
    • Nitric vs. Citric Acid Passivation
    • CitriSurf – Citric Acid Passivation
    • Benchtop Ultrasonic Passivation Equipment
    • Ultrasonic Automated Passivation Equipment
    • Automated Ultrasonic Passivation System for Medical Device Parts
    • Passivation Wet Bench for Citric / Nitric Acid
    • Cleanroom Space Saving Automated Passivation System
    • Heated Polypropylene Acid Passivation and Rinse Tanks
    • Agitated Immersion Multi-Tank Passivation Systems
    • Automated Chemical Neutralization Cart
  • Electropolishing Equipment
    • What is electropolishing? How does electropolishing work?
    • Electropolishing Cycle and Current Calculator
    • What is Dry Electropolishing? How does it work?
    • Passivation vs. Electropolishing
    • Table Top Electropolishing Equipment & Electropolishing Machines
    • Electropolishing Wet Benches
    • Large Scale Part Electropolishing Systems
    • Dry Electropolishing Machines
    • EP System – Open Top Wet Bench with Spray Rinse
  • Surface Finishing Systems
    • Alodine Lines
      • What is Alodine / Chem film / Chromate Conversion Coating?
      • Alodine Chem Film Tank Line
    • Mass Finishing Machines
      • Centrifugal Barrel Finishing Machines
      • Spin Dryers / Chip Wringers
      • Vibratory Bowl Polishers
    • Titanium Anodizing Equipment
  • Wet Benches
    • Citric / Nitric Passivation Wet Bench for Stainless Steel & Titanium
    • Electropolishing Equipment in a Wet Bench / Fume Hood
    • Fume Hoods
    • Wet Benches for Semiconductor & FM4910 Applications
    • Quick Dump Rinse Tank
  • Specialty & Custom Industrial Process Systems
    • Contents Restoration
    • Vapor and Dryfilm PTFE Coating Systems
    • Heated Hot Air Parts Dryer
    • Solvent Recovery Equipment
  • Precision Cleaning Chemistries, Solvents & Fluids
    • Why Use a Parts Cleaning Solvent?
    • 3M Novec Engineered Fluids, Fluorinert Liquids, Solvents & Chemicals
    • Solvent Cleaning with 3M Novec Engineered Fluids
    • Thermal Management / Heat Transfer with 3M Novec and Fluorinert Fluids
    • 3M Novec 72DA 73DE Solvent Vapor Degreaser For Medical Device Instruments
    • Solvent Phase-outs
      • AK225 HCFC-225 Phase Out and Replacement with 3M Novec HFE Engineered Fluids
      • Medical Device AK 225 Replacement with 3M Novec Engineered Fluid Solvent
      • nPB Replacement
    • Aqueous Cleaning Chemistries
  • Case Studies
    • Industrial Parts Washer Case Studies
    • Part Cleaning Case Studies
    • Passivation Systems Case Studies
    • Part Finishing Equipment Case Studies
    • Precision Cleaning Systems Case Studies
  • Equipment Financing
MoreInfo
Home   |   Products   |   Case Studies   |   Feed   |   Product Line Card   |   Site Map   |   Contact Us

Best Technology Inc.
14040 23rd Avenue N.  
Minneapolis, MN 55447
612.392.2414   |   763.519.1460  
Sales@BestTechnologyInc.com


Copyright © 2021 · Best Technology Inc.

Industrial Marketing Website by Marketing Zone

  • Request More Information
  • Industrial Parts Washers
    ✛
    • Agitated Immersion Heated Parts Washers
    • Inline Conveyor Wash-Rinse-Dry Parts Washers
    • Immersion Inline Parts Washer
    • Spray Cabinet Parts Washers
      ✛
      • Front Load Spray Cabinet Parts Washer
      • Top Load Spray Cabinet Industrial Parts Washer
    • Vertical Door Pass Through Parts Washer
    • Rotary Drum Parts Washer
    • Powder Coat Prep Equipment
    • Phosphating Lines
    • Pipe Washing Equipment
  • Precision Cleaning Systems
    ✛
    • Applicable Articles
    • How clean is clean?
    • How Do Ultrasonic Cleaners Work?
    • Ultrasonic Benchtop Parts Cleaner
    • Benchtop Ultrasonic Parts Cleaning Multi-Tank Systems
    • Ultrasonic Cleaning Consoles
    • Automated Ultrasonic Parts Cleaning Equipment Wash-Rinse-Dry
    • Large Scale Automated Precision Aqueous Cleaning for Cellular Manufacturing
    • Agitated Immersion Ultrasonic Parts Washer
    • Machine Shop Parts Washer for Swiss and CNC Precision Parts
    • Immersible Ultrasonic Transducers
    • Vapor Degreasers
  • Passivation Equipment
    ✛
    • Applicable Articles
    • What is Passivation? How Does It Work?
    • Nitric vs. Citric Acid Passivation
    • CitriSurf – Citric Acid Passivation
    • Benchtop Ultrasonic Passivation Equipment
    • Ultrasonic Automated Passivation Equipment
    • Automated Ultrasonic Passivation System for Medical Device Parts
    • Passivation Wet Bench for Citric / Nitric Acid
    • Cleanroom Space Saving Automated Passivation System
    • Heated Polypropylene Acid Passivation and Rinse Tanks
    • Agitated Immersion Multi-Tank Passivation Systems
    • Automated Chemical Neutralization Cart
  • Electropolishing Equipment
    ✛
    • What is electropolishing? How does electropolishing work?
    • Electropolishing Cycle and Current Calculator
    • What is Dry Electropolishing? How does it work?
    • Passivation vs. Electropolishing
    • Table Top Electropolishing Equipment & Electropolishing Machines
    • Electropolishing Wet Benches
    • Large Scale Part Electropolishing Systems
    • Dry Electropolishing Machines
    • EP System – Open Top Wet Bench with Spray Rinse
  • Surface Finishing Systems
    ✛
    • Alodine Lines
      ✛
      • What is Alodine / Chem film / Chromate Conversion Coating?
      • Alodine Chem Film Tank Line
    • Mass Finishing Machines
      ✛
      • Centrifugal Barrel Finishing Machines
      • Spin Dryers / Chip Wringers
      • Vibratory Bowl Polishers
    • Titanium Anodizing Equipment
  • Wet Benches
    ✛
    • Citric / Nitric Passivation Wet Bench for Stainless Steel & Titanium
    • Electropolishing Equipment in a Wet Bench / Fume Hood
    • Fume Hoods
    • Wet Benches for Semiconductor & FM4910 Applications
    • Quick Dump Rinse Tank
  • Specialty & Custom Industrial Process Systems
    ✛
    • Contents Restoration
    • Vapor and Dryfilm PTFE Coating Systems
    • Heated Hot Air Parts Dryer
    • Solvent Recovery Equipment
  • Precision Cleaning Chemistries, Solvents & Fluids
    ✛
    • Why Use a Parts Cleaning Solvent?
    • 3M Novec Engineered Fluids, Fluorinert Liquids, Solvents & Chemicals
    • Solvent Cleaning with 3M Novec Engineered Fluids
    • Thermal Management / Heat Transfer with 3M Novec and Fluorinert Fluids
    • 3M Novec 72DA 73DE Solvent Vapor Degreaser For Medical Device Instruments
    • Solvent Phase-outs
      ✛
      • AK225 HCFC-225 Phase Out and Replacement with 3M Novec HFE Engineered Fluids
      • Medical Device AK 225 Replacement with 3M Novec Engineered Fluid Solvent
      • nPB Replacement
    • Aqueous Cleaning Chemistries
  • Case Studies
    ✛
    • Industrial Parts Washer Case Studies
    • Part Cleaning Case Studies
    • Passivation Systems Case Studies
    • Part Finishing Equipment Case Studies
    • Precision Cleaning Systems Case Studies
  • Equipment Financing
  • Contact us for info & free proposal!

More Info